Lifted graphical models: a survey

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lifted Probabilistic Inference for Asymmetric Graphical Models

Lifted probabilistic inference algorithms have been successfully applied to a large number of symmetric graphical models. Unfortunately, the majority of realworld graphical models is asymmetric. This is even the case for relational representations when evidence is given. Therefore, more recent work in the community moved to making the models symmetric and then applying existing lifted inference...

متن کامل

Automorphism Groups of Graphical Models and Lifted Variational Inference

Using the theory of group action, we first introduce the concept of the automorphism group of an exponential family or a graphical model, thus formalizing the general notion of symmetry of a probabilistic model. This automorphism group provides a precise mathematical framework for lifted inference in the general exponential family. Its group action partitions the set of random variables and fea...

متن کامل

Lifted Message Passing as Reparametrization of Graphical Models

Lifted inference approaches can considerably speed up probabilistic inference in Markov random fields (MRFs) with symmetries. Given evidence, they essentially form a lifted, i.e., reduced factor graph by grouping together indistinguishable variables and factors. Typically, however, lifted factor graphs are not amenable to offthe-shelf message passing (MP) approaches, and hence requires one to u...

متن کامل

Graphical models beyond standard settings: lifted decimation, labeling, and counting

The influence of Artificial Intelligence (AI) and Machine Learning on our everyday lives has been growing constantly over the past decades. Applications in both areas have attracted much attention and several of them depend on Probabilistic Graphical Models (PGMs). Furthermore, the emerging interest in methods originating from the Statistical Relational Learning (SRL) community has added to thi...

متن کامل

Structure Learning of Probabilistic Graphical Models: A Comprehensive Survey

Probabilistic graphical models combine the graph theory and probability theory to give a multivariate statistical modeling. They provide a unified description of uncertainty using probability and complexity using the graphical model. Especially, graphical models provide the following several useful properties: - Graphical models provide a simple and intuitive interpretation of the structures of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Machine Learning

سال: 2014

ISSN: 0885-6125,1573-0565

DOI: 10.1007/s10994-014-5443-2